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Abstract

Modelling the compositional process by
which the meaning of an utterance arises
from the meaning of its parts is a funda-
mental task of Natural Language Process-
ing. In this paper we draw upon recent
advances in the learning of vector space
representations of sentential semantics and
the transparent interface between syntax
and semantics provided by Combinatory
Categorial Grammar to introduce Com-
binatory Categorial Autoencoders. This
model leverages the CCG combinatory op-
erators to guide a non-linear transforma-
tion of meaning within a sentence. We use
this model to learn high dimensional em-
beddings for sentences and evaluate them
in a range of tasks, demonstrating that
the incorporation of syntax allows a con-
cise model to learn representations that are
both effective and general.

1 Introduction

Since Frege stated his ‘Principle of Semantic
Compositionality’ in 1892 researchers have pon-
dered both how the meaning of a complex expres-
sion is determined by the meanings of its parts,
and how those parts are combined. (Frege, 1892;
Pelletier, 1994). Over a hundred years on the
choice of representational unit for this process
of compositional semantics, and how these units
combine, remain open questions.

Frege’s principle may be debatable from a lin-
guistic and philosophical standpoint, but it has
provided a basis for a range of formal approaches
to semantics which attempt to capture meaning in
logical models. The Montague grammar (Mon-
tague, 1970) is a prime example for this, build-
ing a model of composition based on lambda-
calculus and formal logic. More recent work

in this field includes the Combinatory Categorial
Grammar (CCG), which also places increased em-
phasis on syntactic coverage (Szabolcsi, 1989).

Recently those searching for the right represen-
tation for compositional semantics have drawn in-
spiration from the success of distributional mod-
els of lexical semantics. This approach represents
single words as distributional vectors, implying
that a word’s meaning is a function of the envi-
ronment it appears in, be that its syntactic role or
co-occurrences with other words (Pereira et al.,
1993; Schütze, 1998). While distributional se-
mantics is easily applied to single words, spar-
sity implies that attempts to directly extract distri-
butional representations for larger expressions are
doomed to fail. Only in the past few years has
it been attempted to extend these representations
to semantic composition. Most approaches here
use the idea of vector-matrix composition to learn
larger representations from single-word encodings
(Baroni and Zamparelli, 2010; Grefenstette and
Sadrzadeh, 2011; Socher et al., 2012b). While
these models have proved very promising for com-
positional semantics, they make minimal use of
linguistic information beyond the word level.

In this paper we bridge the gap between recent
advances in machine learning and more traditional
approaches within computational linguistics. We
achieve this goal by employing the CCG formal-
ism to consider compositional structures at any
point in a parse tree. CCG is attractive both for its
transparent interface between syntax and seman-
tics, and a small but powerful set of combinatory
operators with which we can parametrise our non-
linear transformations of compositional meaning.

We present a novel class of recursive mod-
els, the Combinatory Categorial Autoencoders
(CCAE), which marry a semantic process pro-
vided by a recursive autoencoder with the syn-
tactic representations of the CCG formalism.
Through this model we seek to answer two ques-



tions: Can recursive vector space models be recon-
ciled with a more formal notion of compositional-
ity; and is there a role for syntax in guiding seman-
tics in these types of models? CCAEs make use of
CCG combinators and types by conditioning each
composition function on its equivalent step in a
CCG proof. In terms of learning complexity and
space requirements, our models strike a balance
between simpler greedy approaches (Socher et
al., 2011b) and the larger recursive vector-matrix
models (Socher et al., 2012b).

We show that this combination of state of the art
machine learning and an advanced linguistic for-
malism translates into concise models with com-
petitive performance on a variety of tasks. In both
sentiment and compound similarity experiments
we show that our CCAE models match or better
comparable recursive autoencoder models.1

2 Background

There exist a number of formal approaches to lan-
guage that provide mechanisms for composition-
ality. Generative Grammars (Jackendoff, 1972)
treat semantics, and thus compositionality, essen-
tially as an extension of syntax, with the generative
(syntactic) process yielding a structure that can be
interpreted semantically. By contrast Montague
grammar achieves greater separation between the
semantic and the syntactic by using lambda calcu-
lus to express meaning. However, this greater sep-
aration between surface form and meaning comes
at a price in the form of reduced computability.
While this is beyond the scope of this paper, see
e.g. Kracht (2008) for a detailed analysis of com-
positionality in these formalisms.

2.1 Combinatory Categorial Grammar

In this paper we focus on CCG, a linguistically
expressive yet computationally efficient grammar
formalism. It uses a constituency-based structure
with complex syntactic types (categories) from
which sentences can be deduced using a small
number of combinators. CCG relies on combi-
natory logic (as opposed to lambda calculus) to
build its expressions. For a detailed introduction
and analysis vis-à-vis other grammar formalisms
see e.g. Steedman and Baldridge (2011).

CCG has been described as having a transpar-
ent surface between the syntactic and the seman-

1A C++ implementation of our models is available at
http://www.karlmoritz.com/

Tina likes tigers

N (S[dcl]\NP)/NP N

NP NP
>

S[dcl]\NP
<

S[dcl]

Figure 1: CCG derivation for Tina likes tigers with
forward (>) and backward application (<).

tic. It is this property which makes it attractive
for our purposes of providing a conditioning struc-
ture for semantic operators. A second benefit of
the formalism is that it is designed with computa-
tional efficiency in mind. While one could debate
the relative merits of various linguistic formalisms
the existence of mature tools and resources, such
as the CCGBank (Hockenmaier and Steedman,
2007), the Groningen Meaning Bank (Basile et al.,
2012) and the C&C Tools (Curran et al., 2007) is
another big advantage for CCG.

CCG’s transparent surface stems from its cate-
gorial property: Each point in a derivation corre-
sponds directly to an interpretable category. These
categories (or types) associated with each term in a
CCG govern how this term can be combined with
other terms in a larger structure, implicitly making
them semantically expressive.

For instance in Figure 1, the word likes has type
(S[dcl]\NP)/NP, which means that it first looks
for a type NP to its right hand side. Subsequently
the expression likes tigers (as type S[dcl]\NP) re-
quires a second NP on its left. The final type of
the phrase S[dcl] indicates a sentence and hence a
complete CCG proof. Thus at each point in a CCG
parse we can deduce the possible next steps in the
derivation by considering the available types and
combinatory rules.

2.2 Vector Space Models of Semantics

Vector-based approaches for semantic tasks have
become increasingly popular in recent years.

Distributional representations encode an ex-
pression by its environment, assuming the context-
dependent nature of meaning according to which
one “shall know a word by the company it keeps”
(Firth, 1957). Effectively this is usually achieved
by considering the co-occurrence with other words
in large corpora or the syntactic roles a word per-
forms.

Distributional representations are frequently
used to encode single words as vectors. Such rep-



resentations have then successfully been applied
to a number of tasks including word sense disam-
biguation (Schütze, 1998) and selectional prefer-
ence (Pereira et al., 1993; Lin, 1999).

While it is theoretically possible to apply the
same mechanism to larger expressions, sparsity
prevents learning meaningful distributional repre-
sentations for expressions much larger than single
words.2

Vector space models of compositional seman-
tics aim to fill this gap by providing a methodol-
ogy for deriving the representation of an expres-
sion from those of its parts. While distributional
representations frequently serve to encode single
words in such approaches this is not a strict re-
quirement.

There are a number of ideas on how to de-
fine composition in such vector spaces. A gen-
eral framework for semantic vector composition
was proposed in Mitchell and Lapata (2008), with
Mitchell and Lapata (2010) and more recently Bla-
coe and Lapata (2012) providing good overviews
of this topic. Notable approaches to this issue in-
clude Baroni and Zamparelli (2010), who com-
pose nouns and adjectives by representing them as
vectors and matrices, respectively, with the com-
positional representation achieved by multiplica-
tion. Grefenstette and Sadrzadeh (2011) use a sim-
ilar approach with matrices for relational words
and vectors for arguments. These two approaches
are combined in Grefenstette et al. (2013), produc-
ing a tensor-based semantic framework with ten-
sor contraction as composition operation.

Another set of models that have very success-
fully been applied in this area are recursive autoen-
coders (Socher et al., 2011a; Socher et al., 2011b),
which are discussed in the next section.

2.3 Recursive Autoencoders
Autoencoders are a useful tool to compress in-
formation. One can think of an autoencoder
as a funnel through which information has to
pass (see Figure 2). By forcing the autoencoder
to reconstruct an input given only the reduced
amount of information available inside the funnel
it serves as a compression tool, representing high-
dimensional objects in a lower-dimensional space.

Typically a given autoencoder, that is the func-
tions for encoding and reconstructing data, are

2The experimental setup in (Baroni and Zamparelli, 2010)
is one of the few examples where distributional representa-
tions are used for word pairs.

Figure 2: A simple three-layer autoencoder. The
input represented by the vector at the bottom is
being encoded in a smaller vector (middle), from
which it is then reconstructed (top) into the same
dimensionality as the original input vector.

used on multiple inputs. By optimizing the two
functions to minimize the difference between all
inputs and their respective reconstructions, this au-
toencoder will effectively discover some hidden
structures within the data that can be exploited to
represent it more efficiently.

As a simple example, assume input vectors
xi ∈ Rn, i ∈ (0..N), weight matrices W enc ∈
R(m×n),W rec ∈ R(n×m) and biases benc ∈ Rm,
brec ∈ Rn. The encoding matrix and bias are used
to create an encoding ei from xi:

ei = fenc(xi) =W encxi + benc (1)

Subsequently e ∈ Rm is used to reconstruct x as
x′ using the reconstruction matrix and bias:

x′i = f rec(ei) =W recei + brec (2)

θ = (W enc,W rec, benc, brec) can then be learned
by minimizing the error function describing the
difference between x′ and x:

E =
1

2

N∑
i

∥∥x′i − xi∥∥2 (3)

Now, if m < n, this will intuitively lead to ei
encoding a latent structure contained in xi and
shared across all xj , j ∈ (0..N), with θ encoding
and decoding to and from that hidden structure.

It is possible to apply multiple autoencoders on
top of each other, creating a deep autoencoder
(Bengio et al., 2007; Hinton and Salakhutdinov,
2006). For such a multi-layered model to learn
anything beyond what a single layer could learn, a
non-linear transformation g needs to be applied at
each layer. Usually, a variant of the sigmoid (σ)



Figure 3: RAE with three inputs. Vectors with
filled (blue) circles represent input and hidden
units; blanks (white) denote reconstruction layers.

or hyperbolic tangent (tanh) function is used for
g (LeCun et al., 1998).

fenc(xi) = g (W encxi + benc) (4)

f rec(ei) = g (W recei + brec)

Furthermore, autoencoders can easily be used as
a composition function by concatenating two input
vectors, such that:

e = f(x1, x2) = g (W (x1‖x2) + b) (5)

(x′1‖x′2) = g
(
W ′e+ b′

)
Extending this idea, recursive autoencoders (RAE)
allow the modelling of data of variable size. By
setting the n = 2m, it is possible to recursively
combine a structure into an autoencoder tree. See
Figure 3 for an example, where x1, x2, x3 are re-
cursively encoded into y2.

The recursive application of autoencoders was
first introduced in Pollack (1990), whose recursive
auto-associative memories learn vector represen-
tations over pre-specified recursive data structures.
More recently this idea was extended and applied
to dynamic structures (Socher et al., 2011b).

These types of models have become increas-
ingly prominent since developments within the
field of Deep Learning have made the training
of such hierarchical structures more effective and
tractable (LeCun et al., 1998; Hinton et al., 2006).

Intuitively the top layer of an RAE will encode
aspects of the information stored in all of the input
vectors. Previously, RAE have successfully been
applied to a number of tasks including sentiment
analysis, paraphrase detection, relation extraction

Model CCG Elements
CCAE-A parse
CCAE-B parse + rules
CCAE-C parse + rules + types
CCAE-D parse + rules + child types

Table 1: Aspects of the CCG formalism used by
the different models explored in this paper.

and 3D object identification (Blacoe and Lapata,
2012; Socher et al., 2011b; Socher et al., 2012a).

3 Model

The models in this paper combine the power of
recursive, vector-based models with the linguistic
intuition of the CCG formalism. Their purpose is
to learn semantically meaningful vector represen-
tations for sentences and phrases of variable size,
while the purpose of this paper is to investigate
the use of syntax and linguistic formalisms in such
vector-based compositional models.

We assume a CCG parse to be given. Let C de-
note the set of combinatory rules, and T the set
of categories used, respectively. We use the parse
tree to structure an RAE, so that each combina-
tory step is represented by an autoencoder func-
tion. We refer to these models Categorial Com-
binatory Autoencoders (CCAE). In total this pa-
per describes four models making increasing use
of the CCG formalism (see table 1).

As an internal baseline we use model CCAE-
A, which is an RAE structured along a CCG parse
tree. CCAE-A uses a single weight matrix each for
the encoding and reconstruction step (see Table 2.
This model is similar to Socher et al. (2011b), ex-
cept that we use a fixed structure in place of the
greedy tree building approach. As CCAE-A uses
only minimal syntactic guidance, this should al-
low us to better ascertain to what degree the use of
syntax helps our semantic models.

Our second model (CCAE-B) uses the compo-
sition function in equation (6), with c ∈ C.

fenc(x, y, c) = g (W c
enc(x‖y) + bcenc) (6)

f rec(e, c) = g (W c
rece+ bcrec)

This means that for every combinatory rule we de-
fine an equivalent autoencoder composition func-
tion by parametrizing both the weight matrix and
bias on the combinatory rule (e.g. Figure 4).

In this model, as in the following ones, we as-
sume a reconstruction step symmetric with the



Model Encoding Function
CCAE-A f(x, y)= g (W (x‖y) + b)

CCAE-B f(x, y, c)= g (W c(x‖y) + bc)

CCAE-C f(x, y, c, t)= g
(∑

p∈{c,t} (W
p(x‖y) + bp)

)
CCAE-D f(x, y, c, tx, ty)= g

(
W c

(
W txx+W tyy

)
+ bc

)
Table 2: Encoding functions of the four CCAE models discussed in this paper.

α : X/Y β : Y
>

αβ : X
g (W>

enc(α‖β) + b>enc)

Figure 4: Forward application as CCG combinator
and autoencoder rule respectively.

Figure 5: CCAE-B applied to Tina likes tigers.
Next to each vector are the CCG category (top)
and the word or function representing it (bottom).
lex describes the unary type-changing operation.
> and < are forward and backward application.

composition step. For the remainder of this paper
we will focus on the composition step and drop the
use of enc and rec in variable names where it isn’t
explicitly required. Figure 5 shows model CCAE-
B applied to our previous example sentence.

While CCAE-B uses only the combinatory
rules, we want to make fuller use of the linguis-
tic information available in CCG. For this pur-
pose, we build another model CCAE-C, which
parametrizes on both the combinatory rule c ∈ C
and the CCG category t ∈ T at every step (see
Figure 2). This model provides an additional de-
gree of insight, as the categories T are semanti-
cally and syntactically more expressive than the
CCG combinatory rules by themselves. Summing
over weights parametrised on c and t respectively,
adds an additional degree of freedom and also al-

lows for some model smoothing.
An alternative approach is encoded in model

CCAE-D. Here we consider the categories not of
the element represented, but of the elements it is
generated from together with the combinatory rule
applied to them. The intuition is that in the first
step we transform two expressions based on their
syntax. Subsequently we combine these two con-
ditioned on their joint combinatory rule.

4 Learning

In this section we briefly discuss unsupervised
learning for our models. Subsequently we de-
scribe how these models can be extended to allow
for semi-supervised training and evaluation.

Let θ = (W,B, L) be our model parameters
and λ a vector with regularization parameters for
all model parameters. W represents the set of all
weight matrices, B the set of all biases and L the
set of all word vectors. LetN be the set of training
data consisting of tree-nodes n with inputs xn, yn
and reconstruction rn. The error given n is:

E(n|θ) = 1

2

∥∥∥rn − (xn‖yn)
∥∥∥2 (7)

The gradient of the regularised objective func-
tion then becomes:

∂J

∂θ
=

1

N

N∑
n

∂E(n|θ)
∂θ

+ λθ (8)

We learn the gradient using backpropagation
through structure (Goller and Küchler, 1996), and
minimize the objective function using L-BFGS.

For more details about the partial derivatives
used for backpropagation, see the documentation
accompanying our model implementation.3

3http://www.karlmoritz.com/



4.1 Supervised Learning
The unsupervised method described so far learns
a vector representation for each sentence. Such a
representation can be useful for some tasks such as
paraphrase detection, but is not sufficient for other
tasks such as sentiment classification, which we
are considering in this paper.

In order to extract sentiment from our models,
we extend them by adding a supervised classifier
on top, using the learned representations v as input
for a binary classification model:

pred(l=1|v, θ) = sigmoid(Wlabel v + blabel) (9)

Given our corpus of CCG parses with label pairs
(N, l), the new objective function becomes:

J =
1

N

∑
(N,l)

E(N, l, θ) +
λ

2
||θ||2 (10)

Assuming each node n ∈ N contains children
xn, yn, encoding en and reconstruction rn, so that
n = {x, y, e, r} this breaks down into:

E(N, l, θ) = (11)∑
n∈N

αErec (n, θ) + (1−α)Elbl(en, l, θ)

Erec(n, θ) =
1

2

∥∥∥[xn‖yn]− rn∥∥∥2 (12)

Elbl(e, l, θ) =
1

2
‖l − e‖2 (13)

This method of introducing a supervised aspect
to the autoencoder largely follows the model de-
scribed in Socher et al. (2011b).

5 Experiments

We describe a number of standard evaluations
to determine the comparative performance of our
model. The first task of sentiment analysis allows
us to compare our CCG-conditioned RAE with
similar, existing models. In a second experiment,
we apply our model to a compound similarity eval-
uation, which allows us to evaluate our models
against a larger class of vector-based models (Bla-
coe and Lapata, 2012). We conclude with some
qualitative analysis to get a better idea of whether
the combination of CCG and RAE can learn se-
mantically expressive embeddings.

In our experiments we use the hyperbolic tan-
gent as nonlinearity g. Unless stated otherwise we

use word-vectors of size 50, initialized using the
embeddings provided by Turian et al. (2010) based
on the model of Collobert and Weston (2008).4

We use the C&C parser (Clark and Curran,
2007) to generate CCG parse trees for the data
used in our experiments. For models CCAE-C and
CCAE-D we use the 25 most frequent CCG cate-
gories (as extracted from the British National Cor-
pus) with an additional general weight matrix in
order to catch all remaining types.

5.1 Sentiment Analysis
We evaluate our model on the MPQA opinion
corpus (Wiebe et al., 2005), which annotates ex-
pressions for sentiment.5 The corpus consists of
10,624 instances with approximately 70 percent
describing a negative sentiment. We apply the
same pre-processing as (Nakagawa et al., 2010)
and (Socher et al., 2011b) by using an additional
sentiment lexicon (Wilson et al., 2005) during the
model training for this experiment.

As a second corpus we make use of the sentence
polarity (SP) dataset v1.0 (Pang and Lee, 2005).6

This dataset consists of 10662 sentences extracted
from movie reviews which are manually labelled
with positive or negative sentiment and equally
distributed across sentiment.

Experiment 1: Semi-Supervised Training In
the first experiment, we use the semi-supervised
training strategy described previously and initial-
ize our models with the embeddings provided by
Turian et al. (2010). The results of this evalua-
tion are in Table 3. While we achieve the best per-
formance on the MPQA corpus, the results on the
SP corpus are less convincing. Perhaps surpris-
ingly, the simplest model CCAE-A outperforms
the other models on this dataset.

When considering the two datasets, sparsity
seems a likely explanation for this difference in
results: In the MPQA experiment most instances
are very short with an average length of 3 words,
while the average sentence length in the SP corpus
is 21 words. The MPQA task is further simplified
through the use or an additional sentiment lexicon.
Considering dictionary size, the SP corpus has a
dictionary of 22k words, more than three times the
size of the MPQA dictionary.

4http://www.metaoptimize.com/projects/
wordreprs/

5http://mpqa.cs.pitt.edu/
6http://www.cs.cornell.edu/people/

pabo/movie-review-data/



Method MPQA SP
Voting with two lexica 81.7 63.1
MV-RNN (Socher et al., 2012b) - 79.0
RAE (rand) (Socher et al., 2011b) 85.7 76.8
TCRF (Nakagawa et al., 2010) 86.1 77.3
RAE (init) (Socher et al., 2011b) 86.4 77.7
NB (Wang and Manning, 2012) 86.7 79.4
CCAE-A 86.3 77.8
CCAE-B 87.1 77.1
CCAE-C 87.1 77.3
CCAE-D 87.2 76.7

Table 3: Accuracy of sentiment classification on
the sentiment polarity (SP) and MPQA datasets.
For NB we only display the best result among a
larger group of models analysed in that paper.

This issue of sparsity is exacerbated in the more
complex CCAE models, where the training points
are spread across different CCG types and rules.
While the initialization of the word vectors with
previously learned embeddings (as was previously
shown by Socher et al. (2011b)) helps the mod-
els, all other model variables such as composition
weights and biases are still initialised randomly
and thus highly dependent on the amount of train-
ing data available.

Experiment 2: Pretraining Due to our analy-
sis of the results of the initial experiment, we ran a
second series of experiments on the SP corpus. We
follow (Scheible and Schütze, 2013) for this sec-
ond series of experiments, which are carried out on
a random 90/10 training-testing split, with some
data reserved for development.

Instead of initialising the model with external
word embeddings, we first train it on a large
amount of data with the aim of overcoming the
sparsity issues encountered in the previous exper-
iment. Learning is thus divided into two steps:

The first, unsupervised training phase, uses the
British National Corpus together with the SP cor-
pus. In this phase only the reconstruction signal
is used to learn word embeddings and transforma-
tion matrices. Subsequently, in the second phase,
only the SP corpus is used, this time with both the
reconstruction and the label error.

By learning word embeddings and composition
matrices on more data, the model is likely to gen-
eralise better. Particularly for the more complex
models, where the composition functions are con-
ditioned on various CCG parameters, this should

Training
Model Regular Pretraining
CCAE-A 77.8 79.5
CCAE-B 76.9 79.8
CCAE-C 77.1 81.0
CCAE-D 76.9 79.7

Table 4: Effect of pretraining on model perfor-
mance on the SP dataset. Results are reported on a
random subsection of the SP corpus; thus numbers
for the regular training method differ slightly from
those in Table 3.

help to overcome issues of sparsity.
If we consider the results of the pre-trained ex-

periments in Table 4, this seems to be the case.
In fact, the trend of the previous results has been
reversed, with the more complex models now per-
forming best, whereas in the previous experiments
the simpler models performed better. Using the
Turian embeddings instead of random initialisa-
tion did not improve results in this setup.

5.2 Compound Similarity

In a second experiment we use the dataset from
Mitchell and Lapata (2010) which contains sim-
ilarity judgements for adjective-noun, noun-noun
and verb-object pairs.7 All compound pairs have
been ranked for semantic similarity by a number of
human annotators. The task is thus to rank these
pairs of word pairs by their semantic similarity.

For instance, the two compounds vast amount
and large quantity are given a high similarity score
by the human judges, while northern region and
early age are assigned no similarity at all.

We train our models as fully unsupervised au-
toencoders on the British National Corpus for this
task. We assume fixed parse trees for all of the
compounds (Figure 6), and use these to compute
compound level vectors for all word pairs. We
subsequently use the cosine distance between each
compound pair as our similarity measure. We
use Spearman’s rank correlation coefficient (ρ) for
evaluation; hence there is no need to rescale our
scores (-1.0 – 1.0) to the original scale (1.0 – 7.0).

Blacoe and Lapata (2012) have an extensive
comparison of the performance of various vector-
based models on this data set to which we compare
our model in Table 5. The CCAE models outper-

7http://homepages.inf.ed.ac.uk/mlap/
resources/index.html
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Figure 6: Assumed CCG parse structure for the compound similarity evaluation.

Method Adj-N N-N V-Obj
Human 0.52 0.49 0.55
(Blacoe and Lapata, 2012)
�/+ 0.21 - 0.48 0.22 - 0.50 0.18 - 0.35
RAE 0.19 - 0.31 0.24 - 0.30 0.09 - 0.28

CCAE-B 0.38 0.44 0.34
CCAE-C 0.38 0.41 0.23
CCAE-D 0.41 0.44 0.29

Table 5: Correlation coefficients of model predic-
tions for the compound similarity task. Numbers
show Spearman’s rank correlation coefficient (ρ).
Higher numbers indicate better correlation.

form the RAE models provided by Blacoe and La-
pata (2012), and score towards the upper end of the
range of other models considered in that paper.

5.3 Qualitative Analysis

To get better insight into our models we also per-
form a small qualitative analysis. Using one of the
models trained on the MPQA corpus, we gener-
ate word-level representations of all phrases in this
corpus and subsequently identify the most related
expressions by using the cosine distance measure.
We perform this experiment on all expressions of
length 5, considering all expressions with a word
length between 3 and 7 as potential matches.

As can be seen in Table 6, this works with vary-
ing success. Linking expressions such as convey-
ing the message of peace and safeguard(ing) peace
and security suggests that the model does learn
some form of semantics.

On the other hand, the connection between ex-
pressed their satisfaction and support and ex-
pressed their admiration and surprise suggests
that the pure word level content still has an impact
on the model analysis. Likewise, the expressions
is a story of success and is a staunch supporter
have some lexical but little semantic overlap. Fur-
ther reducing this link between the lexical and the
semantic representation is an issue that should be
addressed in future work in this area.

6 Discussion

Overall, our models compare favourably with the
state of the art. On the MPQA corpus model
CCAE-D achieves the best published results we
are aware of, whereas on the SP corpus we achieve
competitive results. With an additional, unsuper-
vised training step we achieved results beyond the
current state of the art on this task, too.

Semantics The qualitative analysis and the ex-
periment on compounds demonstrate that the
CCAE models are capable of learning semantics.
An advantage of our approach—and of autoen-
coders generally—is their ability to learn in an
unsupervised setting. The pre-training step for
the sentiment task was essentially the same train-
ing step as used in the compound similarity task.
While other models such as the MV-RNN (Socher
et al., 2012b) achieve good results on a particu-
lar task, they do not allow unsupervised training.
This prevents the possiblity of pretraining, which
we showed to have a big impact on results, and fur-
ther prevents the training of general models: The
CCAE models can be used for multiple tasks with-
out the need to re-train the main model.

Complexity Previously in this paper we argued
that our models combined the strengths of other
approaches. By using a grammar formalism we
increase the expressive power of the model while
the complexity remains low. For the complex-
ity analysis see Table 7. We strike a balance be-
tween the greedy approaches (e.g. Socher et al.
(2011b)), where learning is quadratic in the length
of each sentence and existing syntax-driven ap-
proaches such as the MV-RNN of Socher et al.
(2012b), where the size of the model, that is the
number of variables that needs to be learned, is
quadratic in the size of the word-embeddings.

Sparsity Parametrizing on CCG types and rules
increases the size of the model compared to a
greedy RAE (Socher et al., 2011b). The effect
of this was highlighted by the sentiment analysis
task, with the more complex models performing



Expression Most Similar
convey the message of peace safeguard peace and security
keep alight the flame of keep up the hope
has a reason to repent has no right
a significant and successful strike a much better position
it is reassuring to believe it is a positive development
expressed their satisfaction and support expressed their admiration and surprise
is a story of success is a staunch supporter
are lining up to condemn are going to voice their concerns
more sanctions should be imposed charges being leveled
could fray the bilateral goodwill could cause serious damage

Table 6: Phrases from the MPQA corpus and their semantically closest match according to CCAE-D.

Complexity
Model Size Learning
MV-RNN O(nw2) O(l)
RAE O(nw) O(l2)
CCAE-* O(nw) O(l)

Table 7: Comparison of models. n is dictionary
size, w embedding width, l is sentence length. We
can assume l � n � w. Additional factors such
as CCG rules and types are treated as small con-
stants for the purposes of this analysis.

worse in comparison with the simpler ones. We
were able to overcome this issue by using addi-
tional training data. Beyond this, it would also be
interesting to investigate the relationships between
different types and to derive functions to incorpo-
rate this into the learning procedure. For instance
model learning could be adjusted to enforce some
mirroring effects between the weight matrices of
forward and backward application, or to support
similarities between those of forward application
and composition.

CCG-Vector Interface Exactly how the infor-
mation contained in a CCG derivation is best ap-
plied to a vector space model of compositionality
is another issue for future research. Our investi-
gation of this matter by exploring different model
setups has proved somewhat inconclusive. While
CCAE-D incorporated the deepest conditioning on
the CCG structure, it did not decisively outperform
the simpler CCAE-B which just conditioned on
the combinatory operators. Issues of sparsity, as
shown in our experiments on pretraining, have a
significant influence, which requires further study.

7 Conclusion

In this paper we have brought a more formal no-
tion of semantic compositionality to vector space
models based on recursive autoencoders. This was
achieved through the use of the CCG formalism
to provide a conditioning structure for the matrix
vector products that define the RAE.

We have explored a number of models, each of
which conditions the compositional operations on
different aspects of the CCG derivation. Our ex-
perimental findings indicate a clear advantage for
a deeper integration of syntax over models that use
only the bracketing structure of the parse tree.

The most effective way to condition the compo-
sitional operators on the syntax remains unclear.
Once the issue of sparsity had been addressed, the
complex models outperformed the simpler ones.
Among the complex models, however, we could
not establish significant or consistent differences
to convincingly argue for a particular approach.

While the connections between formal linguis-
tics and vector space approaches to NLP may not
be immediately obvious, we believe that there is a
case for the continued investigation of ways to best
combine these two schools of thought. This paper
represents one step towards the reconciliation of
traditional formal approaches to compositional se-
mantics with modern machine learning.
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